A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations.

نویسندگان

  • Xinhui Xia
  • Dongliang Chao
  • Zhanxi Fan
  • Cao Guan
  • Xiehong Cao
  • Hua Zhang
  • Hong Jin Fan
چکیده

We attempt to meet the general design requirements for high-performance supercapacitor electrodes by combining the strategies of lightweight substrate, porous nanostructure design, and conductivity modification. We fabricate a new type of 3D porous and thin graphite foams (GF) and use as the light and conductive substrates for the growth of metal oxide core/shell nanowire arrays to form integrated electrodes. The nanowire core is Co3O4, and the shell is a composite of conducting polymer (poly(3,4-ethylenedioxythiophene), PEDOT) and metal oxide (MnO2). To show the advantage of this integrated electrode design (viz., GF + Co3O4/PEDOT-MnO2 core/shell nanowire arrays), three other different less-integrated electrodes are also prepared for comparison. Full supercapacitor devices based on the GF + Co3O4/PEDOT-MnO2 as positive electrodes exhibit the best performance compared to other three counterparts due to an optimal design of structure and a synergistic effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of Graphene/MoS2 Nanocomposite for Flexible Energy Storage

In the present work,MoS2 decorated graphene nanocomposite powders were synthesized by laser scribing method.Theobtainedflexible light-scribed graphene/MoS2composites are very suitableas micro-supercapacitors and thus their performance was evaluated at different concentrations.The effect of laser scribing process to reducegraphene oxide (GO) was investigated. The GO/MoS2composite wassynthesized ...

متن کامل

Merging of Kirkendall Growth and Ostwald Ripening: CuO@MnO2 Core-shell Architectures for Asymmetric Supercapacitors

Fabricating hierarchical core-shell nanostructures is currently the subject of intensive research in the electrochemical field owing to the hopes it raises for making efficient electrodes for high-performance supercapacitors. Here, we develop a simple and cost-effective approach to prepare CuO@MnO2 core-shell nanostructures without any surfactants and report their applications as electrodes for...

متن کامل

Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes

Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu₂O@NiCo₂S₄) core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu₂O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo₂S₄ nanosheets on the surface of CuO/Cu₂O nanowires to form the ...

متن کامل

Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices

Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricate...

متن کامل

Graphene-based nanowire supercapacitors.

We present a new type of electrochemical supercapacitors based on graphene nanowires. Graphene oxide (GO)/polypyrrole (PPy) nanowires are prepared via electrodepostion of GO/PPy composite into a micoroporous Al2O3 template, followed by the removal of template. PPy is electrochemically doped by oxygen-containing functional groups of the GO to enhance the charging/discharging rates of the superca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2014